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Abstract

Purpose – This paper aims to develop a multidomain boundary element method (BEM) for modeling
2D complex turbulent thermal flow using low Reynolds two-equation turbulence models.

Design/methodology/approach – The integral boundary domain equations are discretised using
mixed boundary elements and a multidomain method also known as a subdomain technique. The
resulting system matrix is an overdetermined, sparse block banded and solved using a fast iterative
linear least squares solver.

Findings – The simulation of a turbulent flow over a backward step is in excellent agreement with
the finite volume method using the same turbulent model. A grid consisting of over 100,000 elements
could be solved in the order of a few minutes using a 3.0 Ghz P4 and 1GB memory indicating good
efficiency.

Originality/value – The paper shows, for the first time, that the BEM is applicable to thermal flows
using k-1.
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Paper type Research paper

1. Introduction
The present work represents the continuity of our previous article Ramšak and Škerget
(2005), where an isothermal turbulent flow is modelled using the same numerical
algorithm. The thermal energy equation is added in the present paper. Practically, all
engineering thermal problems are of a turbulent nature. A boundary element method
(BEM) is well known for solving a thermal laminar flow but not for a turbulent flow.
Besides, our previous-mentioned article one finds very few BEM solutions for a
turbulent flow in the open literature. The solution of a relative simple channel flow
using an algebraic and one-equation turbulence models is presented in Škerget et al.
(1990) and Alujevič et al. (1991). Authors Wu and Sugavanam (1978) applied BEM only
for a flow kinematics while flow kinetics, which is more complicated part in the
turbulent flow, was solved using a finite element method and a low-Reynolds
two-equation turbulent model. The solution of a simple 2D turbulent Couette flow and
a flow past a finite plate was presented. A thermal flow example is not presented in any
of mentioned articles.

A two-equation turbulence models are most commonly used in an engineering
practice because of the best ratio between a solution quality and computational
economy. From the numerical point of view, a turbulence modelling using
two-equation turbulence model is more complicated than a laminar flow modelling.
Two additional nonlinear equations are added to the basic nonlinear set of equations
governing a laminar flow increasing the nonlinearity of the basic set of equations
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across variable turbulent viscosity. In the case of k-1 turbulent model, two additional
equations contains extremely nonlinear source functions connecting them together and
slowing down the solution convergence. These source functions became singular near
the walls where a special treatment is necessary. From this, we can conclude that a
good numerical algorithm solving a laminar flow is necessary and serves as a starting
point before the one can proceed to a turbulent flow computations.

The requested properties for a laminar flow solver are the:

(1) stability at a higher Reynolds number values;

(2) accuracy;

(3) economy of the solution; and

(4) ability to a solve high-grid density with high-ratio longest/shortest element.

The property (1) is a common problem using BEM. The stability of our BEM numerical
algorithm is the main topic in our previous work Ramšak and Škerget (2004), where
considerable effort was done to increase the stability at a convection dominated
laminar flows. The result was a stable algorithm at the Reynolds number value up to
50,000 in the case of the laminar flow in a driven cavity example, thus far exceeding the
largest value of 15,000 computed using BEM by Rek and Škerget (1994).

The accuracy of the BEM, the property (2), is well known quality of BEM (Brebbia
et al., 1984; Grigoriev and Dargush, 1999; Škerget et al., 1999; Ramšak and Škerget,
1999). In comparison to the other numerical methods, the accuracy of BEM is more
significant at a lower grid density.

All demanded properties will be fulfilled using the following techniques.
The property (4) is concerned with the available computer memory. If the solution
domain is treated as a single entity, which is the primary advantage of BEM against
other domain numerical techniques, the system matrix is full and non-symmetric.
For diffusive problems the matrix dimension is of order of the number of boundary
elements. For diffusion-convection problems the matrix dimension is significantly
increased by the number of domain nodal points. At this stage, only the integrals of
fundamental solution are already wasteful of memory at a higher grid density.
An elegant solution is applying multidomain BEM, well known also as a subdomain
technique (Telles, 1987; Hriberšek and Škerget, 1996).

If the solution domain is divided to the smallest subdomains in the limiting case the
obtained system matrix is similar to those obtained using a finite element method,
namely a sparse and a diagonal block banded. The indexed matrix storage for nonzero
numbers is introduced thus decreasing the necessary memory of order 10,000 times at
a moderate grid density (Ramšak and Škerget, 2000). At a higher grid density, the
saving is even higher. Using the multidomain approach, the matrix of a fundamental
solution integrals are smaller by the same order. Property (3) considering the economy
of computation is also fulfilled using the multidomain approach. A sparse system
matrix is ideal for a fast iterative methods solving an algebraic system equations
(Hriberšek and Škerget, 1996).

The speed-up factor in comparison to a direct solver is approximately 10,000
already at a moderate grid density (Ramšak and Škerget, 2000). Articles by Škerget
et al. (1999) and Grigoriev and Dargush (1999) also confirm the stability of multidomain
model at high-Reynolds number values.

Boundary
element method

515



The structure of the paper follows. In Section 2, the governing equations are stated.
In Section 3, the numerical algorithm of BEM for solving a general form of a
differential parabolic diffusion convective equation is explained. Numerical example is
presented in Section 4, to be followed by conclusions.

2. Governing equations
2.1 Stream function vorticity formulation
The stream function vorticity formulation of Navier Stokes equations is very often used
for a 2D laminar flow. Let us mention only two most frequently cited papers namely the
benchmark solutions of a driven cavity flow by Ghia et al. (1982), and the work by Davis
(1983) which is well known benchmark solution for a natural convection in a closed
cavity. A simplicity, stability and economy of the computation are the quality of the
stream vorticity formulation. The main restriction is its limitation only to a 2D flow.

The stream function vorticity formulation and turbulence we have found only in the
three papers. In the first paper by authors Cortella et al. (2001), the stream vorticity
formulation is used for some kind of an algebraic large eddy simulation using a finite
element method. The papers by Elkaim et al. (1992) and Abib and Jaluria (1993) present
the stream vorticity formulation and a two-equation turbulent model using a control
volume method. In this paper, the same governing equations are solved as at previous
mentioned papers.

In 2Ds, the stream function C equation can be written as the elliptic PDE:

›2C

›xi›xi
¼ 2v ð1Þ

and is also valid for a turbulent flow. The vorticity v transport equation for a turbulent
flow differs only at the turbulent viscosity nT which is added to the molecular viscosity
n and can be written as the parabolic PDE:

›v

›t
þ vj

›v

›xj
¼

›

›xj
ðn ¼ n T

›v

›xj

� �
þ Sv; ð2Þ

where Sw is source function including body forces, such as buoyancy or rotation. The
velocity vector vj is defined as:

vj ¼
›C

›y
;2

›C

›x

� �
: ð3Þ

Let us mention, that equation (2) is not derived from first principles. According to
Elkaim et al. (1992) and others, the exact equation is so complicated as to be impractical
for a variable viscosity turbulent flow. Equation (2) will be accepted as a modelling
approximation which has and will prove to be very useful in view of the quality of the
numerical predictions.

The transport equations for turbulence kinetic energy and energy dissipation are
equivalent as at other formulations of Navier-Stokes equations:

›k

›t
þ vj

›k

›xj
¼ P 2 12 D þ

›

›xj
nþ

n T

sk

� �
›k

›xj

� �
ð4Þ
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›1

›t
þ vj

›1

›xj
¼ C11 f 1

1

k
P 2 C12 f 2

12

k
þ E þ

›

›xj
nþ

n T

s1

� �
›1

›xj

� �
; ð5Þ

where the turbulent viscosity is related to k and 1 via:

n T ¼ Cm f m
k 2

1
: ð6Þ

These equations are written as a general low-Reynolds-number model, where the
constants and functions are specified according to the turbulence model. The
production term P is common for all models. For 2D examples, the production term is
computed as:

P ¼ n T 2
›vx

›x

� �2

þ
›vx

›y
þ

›vy

›x

� �2

þ2
›vy

›y

� �2
 !

In numerical examples, two models will be used.
The first model is Chien (1982) (CH) using:

f m ¼ 1:02 expð20:0115yþÞ;

f 1 ¼ 1; f 2 ¼ 12 0:222 exp 2
RT

6

� �2
 !

;

D ¼ 2n
k

y 2
; E ¼ 22n

1

y 2

� �
expð20:5yþÞ;

C11 ¼ 1:35; C12 ¼ 1:8; Cm ¼ 0:09;

sk ¼ 1:0; s1 ¼ 1:3:

The wall boundary conditions are:

k ¼ 0; 1 ¼ 0 at y ¼ 0

The second model is Fan et al. (1993) (FLB) model with the following constants and
functions:

f m ¼ 0:4
fwffiffiffiffiffiffi
RT

p þ 12 0:4
fwffiffiffiffiffiffi
RT

p

� �
12 e2Rv=42:63
� �3

;

f 1 ¼ 1; f 2 ¼ 12
0:4

1:8
e2ðRT=6Þ

2

� �
f 2w;

f w ¼ 12 exp 2

ffiffiffiffiffi
Ry

p
2:30

þ

ffiffiffiffiffi
Rv

p

2:30
2

Ry

8:89

� �
12 e2Ry=20
� �3 !

;

D ¼ 0; E ¼ 0; C11 ¼ 1:39; C12 ¼ 1:80; Cm ¼ 0:09; sk ¼ 1:0; s1 ¼ 1:3:
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The wall boundary conditions are:

k ¼ 0;
›1

›y
¼ 0 at y ¼ 0:

Let us mention that CH model is using a reduced apparent turbulent dissipation, while
FLB model is using a true dissipation. The difference between them is the 1 boundary
condition and damp functions D and E. The criteria numbers are standard:

RT ¼
k 2

n1
; Ry ¼

y
ffiffiffi
k

p

n
; Rt ¼

yvt

n
; vt ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
njvjw

p
; ð7Þ

where the y is distance to the nearest wall. The wall friction velocity vt is computed
using the absolute value of the wall vorticity jvjw.

2.2 Thermal energy transport equation
Similar to the modelled turbulent vorticity kinetic transport equation (2), the turbulent
transport equation for temperature T can be written using the turbulent viscosity
hypothesis as follows:

›T

›t
þ vj

›T

›xj
¼

›

›xj
kþ

n T

sT

� �
›T

›xj

� �
þ

ST

@cp
: ð8Þ

The effective heat diffusivity is computed as a sum of the molecular diffusivity denoted
by k and turbulent viscosity divided with constant sT ¼ 0.9. Heat sources are included
in source term ST divided with mass density @ and specific isobaric heat capacity
denoted by cp.

2.3 Boundary conditions
For a turbulent flow, the boundary conditions for the stream function and vorticity
remains the same as at laminar flow. The vorticity boundary condition at the wall
changes only when the law of the wall is used (Elkaim et al., 1992).

The boundary condition at the walls yields the known stream function value:

C ¼ �C ð9Þ

and its derivative in normal direction to the wall:

›C

›n
¼ vt ð10Þ

where vt is the known tangential velocity. As it is well known, this provides no direct
condition for the wall vorticity. This is the major difficulty associated with the
computation of the vorticity on a solid walls and this difficulty becomes even more
restricting when computing turbulent flows with k-1 model because of the wall
functions usually associated with the wall vorticity.

If numerical techniques like FEM and FDM are used the wall vorticity uw is
computed locally from a near wall stream function distribution. In the work of Ghia
et al. (1982), the second-order accurate formula is used:
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vw ¼ 2
›2C

›y 2
¼ 2

CJþ1 2 2CJ þCJ21

Dy 2

generally not satisfying the vorticity solenoidity condition.
In the present BEM numerical algorithm, the wall vorticities vG are computed

implicitly from the stream function transport equation (1), because C and its normal
derivatives are both known boundary conditions. Thus, the BEM integral equations
are available at the solution domain boundary G for the unknown wall vorticities vG.
This is the significant advantage, because the solenoidity is preserved at each iteration.
This approach was successful at a laminar flow simulation and causes no problem at
the present turbulent flow example.

Regarding the temperature transport equation (8), the boundary conditions are
simple of a Diriclet, Neumann or Cauchy type on the boundary of the computational
domain. It could also be any their combination. Of course, applying only the Neumann
type of boundary condition at a complete boundary will result in an infinite number of
solutions, so at least at one point the temperature value must be prescribed.

3. Numerical solution of a general parabolic diffusive
convective transport equation
3.1 Differential form
The differential transport equations for the stream function, vorticity, turbulent kinetic
energy, dissipation and temperature can be written in a general form as:

Du

Dl
¼

›u

›l
þ vj

›u

›xj

¼
›

›xj
aðxj; uÞ

›u

›xj
þ Sðxj; uÞ;

ð11Þ

where u is an arbitrary scalar field function, a(xj,u) is a variable diffusivity and S(xj,u)
is a source term. Generally, the variables a and S are nonlinear and in a function of
time, place and other field variables.

The finite difference approximation of the field function time derivative at time level
l is written as:

›u

›t
<

u l 2 u l21

Dt
;

where Dt ¼ t l 2 t l21 is the time increment. The contribution of the previous time step
is added to the source term S as:

2
u l21

Dt
:

The fundamental solutions necessary for boundary integral equation are known only
for linear differential equations with constant coefficients. The variable diffusivity a is
split on constant a and variable part a as:

aðxj; uÞ ¼ �aþ �aðxj; uÞ:
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Introducing this equation into diffusivity term, the next equivalence is obtained:

›

›xj
a
›u

›xj

� �
¼ �a

›2u

›x2j
þ

›

›xj
~a
›u

›xj

� �
:

Now, more possibilities are available (Ramšak and Škerget, 2005). The simplest is
dealing the second term on the right-hand side as the source term S:

S ¼
›

›xj
�aðxj; uÞ

›uk21

›xj

� �
; ð12Þ

where k is the inner iteration index. Similar to the source term treatment, a
semi-implicit approach based on the backward Euler scheme as the linearization
technique for the convective term is applied. This allows in the case of a vorticity
transport equation the direct computation of an intermediate vorticity field based on
the known velocity field, computed from the known stream function distribution.

The final differential representation of the parabolic diffusion-convective equation
is therefore:

�a
›2u l

›x2j
2

u l

Dt
2 vk21

j

›u l

›xj
þ S k21 ¼ 0; ð13Þ

where k is the inner iteration index. For the sake of clarity, the superscript l and k will
be omitted in further text.

Boundary conditions on the boundary G and the initial conditions in the domain V
must be known:

u ¼ �u; on G1 for t $ to ð14Þ

›u

›n
¼

›u

›n
on G2 for t $ to; ð15Þ

u ¼ �uo in V for t ¼ to: ð16Þ

When dealing a BEM and a variable diffusivity problem, such as a turbulent flow, the
multidomain technique must be applied in order to apply different constant diffusivity
at an each subdomain. The second reason for applying the multidomain technique is to
make a system and integral matrices sparse, as mentioned in the introduction.

As each subdomain is treated as a single entity, the interface nodes have to
communicate results between subdomains. This is possible in an iterative way or much
better in an implicit way, where at the interface boundaries between the subdomains I
and II the compatibility interface condition for u is applied:

ujI ¼ ujII; ð17Þ

as well as the equilibrium interface condition:

l
›u

›n
jI ¼ 2l

›u

›n
jII; ð18Þ
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where l is a diffusion factor for the sake of generality. For example, l ¼ nþ ðn T=skÞ
when dealing turbulent kinetic energy transport equation.

3.2 Integral form
The general form of the differential parabolic diffusion-convective equation (13) can be
transformed into an equivalent integral statement (Brebbia et al., 1984; Škerget et al.,
1999):

0 ¼ 2cðjÞuðjÞ2 �a

Z
G

u
›u

*

›n
dGþ �a

Z
G

›u

›n
u
*
dG diffusion2

Z
G

uvjnju
*
dG

þ

Z
V

uvj
›u*

›xj
dV; convectionþ

Z
V

Su
*
dV; source S

ð19Þ

where nj is the unit normal vector to the boundary element at the nodal point. The
variable u* is modified Helmholtz fundamental solution (Ramšak and Škerget, 2005).
Other fundamental solutions can be applied, e.g. an elliptic diffusion-convective
(Škerget et al., 1999), but we have used the modified Helmholtz fundamental solution in
presented numerical example.

3.3 Discrete form
Let us introduce some notation comments. The integral equation (19) is valid for any
arbitrary geometry. From now on, in order to distinguish the solution domainV and its
exterior boundary G from the subdomain geometry, the subdomain domain is denoted
by Vs and the subdomain boundary by Gs consistently. The subscript e is used to
denote a boundary element.

Following the mixed boundary elements idea, the simplest possible discretisation is
the continuous linear field function approximation over the boundary element and the
constant approximation of its derivative in the normal direction to the boundary
element (normal flux) (Figure 1). The main reason for this is to keep the numerical
scheme as simple as possible. Regarding the storage and CPU cost, we prefer to use a
larger number of linear subdomains rather than a smaller number of higher order
subdomains. Another reason is that the higher order elements are more sensible to
stability problems than lower order ones.

An unknown field function u is approximated with a continuous linear interpolation
polynomials over the boundary element Fn¼2 (Figure 1(a)):

Figure 1.
Continuous linear

approximation over a
boundary element n ¼ 2
(figure a) and subdomain

approximation N ¼ 4
(figure c). Discontinuous

constant normal flux
approximation over

boundary element (n ¼ 1)
(figure b)

∂u

∂nu

(a) (b) (c)

Notes: The × denotes a function u boundary nodes and the o denotes a normal
flux ∂u/∂n boundary nodes
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Fn¼2 ¼
1

2

12 j

1þ j

( )
; ð20Þ

where j [ [21,1] is the local coordinate system and n ¼ 2 is the degree of freedom.
The unknown normal flux is approximated with constant interpolation polynomials
Fn¼1 as:

Fn¼1 ¼ {1}; ð21Þ

Next, the function domain approximation has to be dealt with. The subdomain is
surrounded by four boundary elements (Figure 1(c)). The two neighbouring boundary
elements share the same function boundary nodal point, i.e. the subdomain vertex, with
only one unknown or known value. When using different nodal points for the function
approximation over the boundary elements and the domain, for example, in the case of
the discontinuous approximation (Škerget et al., 1999), the discretisation of the
boundary and the domain integrals, resulting from the convective term, leads to
additional numerical error due to transformations between nodal points, which can
present a source of numerical instabilities in convection dominated flows. Thus, the
same interpolation nodal points for boundary and domain approximation are
preferable in a BEM discretisation, and this is one of the major advantages of the
mixed element discretisation approach. In this case, the function domain interpolation
w N is trivial bilinear using N ¼ 4 boundary nodal points and given by:

fN¼4 ¼
1

4

12 j2 hþ jh

1þ j2 h2 jh

1þ jþ hþ jh

12 jþ h2 jh

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
; ð22Þ

where j,h [ [21,1] are again local coordinate system. It should be mentioned that
variable diffusivity a and source function S are approximated with the same domain
functions as u, equations (22).

With the interpolation polynomials defined, the boundary integrals of the
fundamental solution u* over the individual boundary element Ge are written as:

hn ¼

Z
Ge

Fn ›u
*

›n
dGe; g n ¼

Z
Ge

Fnu
*
dGe; ð23Þ

and the domain integrals over individual subdomain Vs are:

dNj ¼

Z
Vs

fN ›u
*

›xj
dVs; dN ¼

Z
Vs

fNu
*
dVs: ð24Þ

The integrals are functions of the geometry and material properties. In the case of the
Helmholtz fundamental solution, the remaining variable is a diffusivity. In the case of a
laminar flow computation, the integrals have to be computed only once at the
beginning of the computation. When computing a turbulent flow, turbulent viscosity
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changes each iteration and one should keep in mind that integrals should be
recomputed each iteration. In this work, two optimisation approaches are used. First,
integrals are computed each n iterations since the turbulent viscosity changes only a
little each iteration. Usually, this value is ten iterations and higher values. The
principle of second optimisation procedure is that only the integrals where the average
cell turbulent viscosity changes more than p-per cent are computed. The usually value
of p is approx. 1 per cent and this value has a minimal influence on results. With this
optimisation, the necessary CPU for integration is of order few percent to the overall
CPU. A Gaussian quadrature rule is used to evaluate integrals of a fundamental
solution. Details on the numerical integration are given in Rek and Škerget (1994).

The complete boundary integral equation over the subdomain boundary Gs will be
written as the sum of all individual boundary integrals Ge surrounding the subdomain.
In the vertex nodal point the contribution {h} of both neighbouring boundary integrals
Ge could be summed up as {hi}. The obtained boundary integral over the subdomain
boundary Gs has N ¼ 4 £ ðn2 1Þ ¼ 4 degrees of freedom. The boundary integral
discretisation has the following form:

Z
Gs

›u
*

›n
udGs ¼

X4
e¼1

Z
Ge

Fn ›u
*

›n
dGe

( )T

{u}n ¼
X4
e¼1

{hn}T

{u}n ¼
XN¼4

i¼1

{h0}T{u}N ;

ð25Þ

where the last sum represents the loop over N ¼ 4 interpolation boundary nodal
points. The boundary integrals {h0} and domain integrals {dj} and {d} over the
subdomain (equation 24) share the same nodal points and could be added together at
each nodal point.

The normal flux interpolation is simple. As mentioned before, the constant
approximation of the normal flux is prescribed to the boundary element, equation (21).
The boundary integral of the normal flux over the complete boundary of subdomain Gs

is computed as a sum of four individual boundary integrals Ge. Thus, the four elements
with only one nodal point each, are written as:Z

Gs

›u

›n
u
*
dGs ¼

X4
e¼1

Z
Ge

Fnu
*
dGe

� �T

›u

›n

� �n

¼
X4
e¼1

{g n}T

›u

›n

� �n

¼
XM¼4

i¼1

{g}T
›u

›n

� �M

;

ð26Þ

where the last sum represents the loop over all M ¼ 4 boundary normal flux nodal
points. The boundary integral equation (19) are written for an individual subdomain
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in discrete form using discrete equations for function (25) and the normal flux
equation (26):

0 ¼ 2cðjÞuðjÞ2 �a
XN
i¼1

{h0}T{u}N þ �a
XM
i¼1

{g}T
›u

›n

� �M

2
XN
i¼1

{gj}
T{uvj}

N
þ
XN
i¼1

{dj}
T{uvj}

N
þ
XN
i¼1

{d}T{S}N ;

ð27Þ

where index imeans the sum over N ¼ 4 function nodal points andM ¼ 4 normal flux
nodal points of individual subdomain (Figure 1). The terms containing (un)known
function u could be added together as:

0 ¼
XN
i¼1

{2 ðcðjÞ þ �ah0Þ þ ð2gj þ djÞvj}
T{u}N þ �a

XM
i¼1

{g}T
›u

›n

� �M

þ
XN
i¼1

{d}T{S}N :

The new variable e is introduced as:

e ¼ 2ðcðjÞ þ �ah0Þ þ ð2gj þ djÞvj

and scalar f of a known value:

f ¼
XN
i¼1

{d}T{S}N :

Using new variables, the discretised integral equation for the subdomain is written as:

XN
i¼1

{e}T{u}N 2
XM
i¼1

{g}T
›u

›n

� �M

¼ f : ð28Þ

The equation (28) is the discrete form of the integral boundary equation (19) at the
source point j. The complete system matrix for one subdomain is obtained by writing
the equation (28) for all function and normal flux subdomain nodal points. The source
point is thus located in j ¼ 1, N function nodal points and j ¼ 1, M normal flux nodal
points resulting in eight equations written as:

½E�{u}2 ½G�
›u

›n

� �
¼ {f }: ð29Þ

3.3.1 Implementation of boundary conditions on boundaries of computational domain.
The nodal points on boundaries of computational domain are described first, as they
are dependent on the physical conditions, relating computational domain to its
surroundings. On the contrary, the interface conditions, which have to be imposed
between the subdomains, are formally the same for all nodal points on subdomain
interface boundaries.

The matrix form of discrete boundary integral equation (29) is transformed to the
system of algebraic equations by applying the boundary condition (14), the known
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function value �u on the boundary G1 and the known normal flux value ›u=›n on G2

equation (15):

½2G�G1

½E�G2

" #
·

›u
›n

� 	
G1

{u}G2

( )
¼

2½E�{�u}G1

½G� ›u
›n

n o
G2

8<
:

9=
;þ {f };

which can be further written as:

½A�{x} ¼ {B}: ð30Þ

3.3.2 Implementation of interface conditions between subdomains. The normal flux and
function nodal points on the boundary element are treated differently, due to the
different interpolation nodes connectivity. We will consider them separately (Figure 2).

3.3.3 Normal flux boundary element nodal points. Two flux points in contact on the
interface between two subdomains I and II are considered as shown on the left-hand
side (Figure 2). In subdomain I, the unknown flux value at nodal point I is denoted as
›u/›nI. Following the same notation, ›u/›nII is the unknown value in subdomain II.
The discretised integral boundary equation (28) can be written for subdomain I as:

XN
i¼1

{e}T{u}N

 !
I

2
XM21

i¼1

{g}T
›u

›n

� �M21

þgI
›u

›nI

 !
I

¼ f I

and for the subdomain II as:

XN
i¼1

{e}T{u}N

 !
II

2
XM21

i¼1

{g}T
›u

›n

� �M21

þgII
›u

›nII

 !
II

¼ f II

where the integrals with index I are computed for subdomain I and the integrals II for
subdomain II. For the sake of simplicity, the sum terms on the left side of equations will
be omitted in the further text. From the equilibrium interface condition (18), an
additional equation is obtained which reduces the number of unknowns from two to
one. The value of ›u/›nI at subdomain I is chosen to be the unknown flux. This
decision could be done for the second unknown variable and is arbitrary. With this
unknown chosen, the above equations can be rewritten as:

2gI
›u

›nI
¼ f I;

Figure 2.
The normal flux (left) and
the function (right) nodal
points on the boundary

element and
implementation of the

interface boundary
condition

Notes: A subdomain indexes are I, II, III and IV

I: ∂u/∂nI = x II, uII

III, uIII

IV, uIV

I, uI =  xII: ∂u/∂nII = – ∂u/∂nI = –x 
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þ
lI

lII
gII

›u

›nI
¼ f II;

to form an over-determined system of two equations with only one unknown.
3.3.4 Function boundary element nodal points. Because of topological aspects of the

vertex points, see Figure 2 (right), the application of the interface boundary conditions
to the subdomain vertex nodal points are not so straightforward as for the flux points.

The discrete form of the integral boundary equation (28) is written for subdomain I
at the vertex nodal point I as:

eIuI ¼ f I

where the rest sums are omitted again. In a similar way, the other three equations are
obtained at subdomains II-IV:

eIIuII ¼ f II

eIIIuIII ¼ f III

eIVuIV ¼ f IV

forming together four linear independent equations. The implementation of the
function compatibility interface condition is straightforward. Similar as before at
the flux nodal points, the uI is chosen to be unknown function value at the vertex nodal
point. The compatibility interface condition is rewritten as:

uI ¼ uII ¼ uIII ¼ uIV:

To summarise, four equations are available with only one unknown, leading to the
over-determined system matrix.

3.4 Solving the over-determined system of equations
The over-determined system matrix A is sparse and block structured. The iterative
linear least squares solver of Paige and Saunders (1982) is used to obtain the solution to
the system of equations. It is analytically equivalent to the standard method of
conjugate gradients, (for details see Paige and Saunders, 1982). To accelerate the
convergence, a diagonal preconditioning method is applied (Ramšak and Škerget,
2000).

4. Turbulent flow over a backward-facing step
Turbulent flow over a backward-facing step is one of the most popular tests for
turbulence models and numerical methods, as well as for studies of the physics of
separating and reattaching turbulent flows. The problem definition, geometry and
boundary conditions are the same as in the work by Hanjalić and Jakirlić (1998)
(Figure 3). They have used Reynolds stress model (RSM). In addition, the results will be
compared to direct numerical simulation (DNS) by Lee et al. (1997), CFX 4.0 using
Launder-Sharma near wall turbulent model, FVM and CH model by Bredberg (2001)
and the experimental data by Jović and Driver (1994). The most crucial comparison will
be with FVM both using the same turbulent model.
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The developed numerical algorithm for solving a general transport equation is verified
using a nonlinear diffusion and a turbulent channel flow example in our previous work
Ramšak and Škerget (2005). The results show good accuracy.

The Reynolds number is based on the average inlet velocity and the step height H.
Its value is ReH ¼ 5,000. The inlet height is 5H giving expansion ratio 1.2. The solution
domain covers 10H prior to the step and 20H downstream from the step (Figure 3).
This size of domain was adopted to coincide with that used for the DNS and RSM in
mentioned articles.

The boundary conditions are equivalent to those in the work by Hanjalić and
Jakirlić (1998) (Figure 3). The inlet profiles of velocity, turbulent kinetic energy and
dissipation are obtained using the preliminary channel flow computation. The channel
width is 5H and the viscosity value is the same as at backward-facing step flow
simulation giving the Reynolds number value of Re5H ¼ 25, 000 (Figure 4).

The coarsest grid A has 8,500 elements, while the finest has 76,500 elements. The
post-step domain at grid A has 100 £ 50 elements clustered in the regions close to the
walls and in the shear layer (Figure 5). In comparison, the RSM results by Hanjalić
are obtained using comparable grid of 90 £ 46 control volumes in post-step domain.
Our second grid B had 200 £ 120 and the finest grid C had 300 £ 180 elements in that
region. The first point near the wall was at y þ < 10,5,2 for A,B,C grid, respectively,
at outlet region. At the recirculation region, the y þ values are much lower.

The steady turbulent solutions are computed using very large time step value of
Dt ¼ 1016. The results of laminar flow computation at ReH ¼ 100 are used as the initial
solution for stream function and vorticity. The stream function under relaxation factor
is URFc ¼ 1.0. All other under relaxation values are 0.01. The convergence criteria is
1024 for all computations.

Figure 4.
Turbulent flow over a
backward-facing step

Note: The coarsest grid using 8,500 elements

Figure 3.
Turbulent flow over a
backward-facing step
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Note: Geometry and boundary conditions
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Figure 5.
Turbulent flow over a
backward-facing step
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We discuss now the computational results shown in Table I as a comparison of
reattachment lengths. First the grid refinement or nodalization analysis is discussed.
Convergence of reattachment lengths to the specific value is evident for BEM using CH
model. Next, the reference solution must be selected. According to the basic fluid
mechanics rules, the experiment is the one to compare to. In the other hand, it is well
known that the comparison of 2D numerical simulation with experiment, which is
always 3D, is questionable. Eliminating the experiment as the reference solution the
situation is clear. The DNS results by Lee et al. (1997) is the reference solution for our
simulations. As expected, the RSM reattachment length is the closest to DNS solution,
both agreeing well to the experiment (Table I). Surprisingly, the RSM reattachment
length is over predicting, while k-1 models results are all under predicting.

Keeping in mind that the main aim of this example is to validate the BEM numerical
scheme for complex turbulent flows, the most crucial comparison is using the same
turbulent model and a different numerical algorithm. In this case, the excellent
agreement of re-attachment point less than 1 per cent is obtained between the BEM
5.81 and the FVM 5.86 by Bredberg (2001) both using CH model. The computations by
Bredberg were made using the finite-volume method code CALF-BFC. The SIMPLE-C
algorithm is used to deal with the velocity-pressure coupling in contrast to the stream
function – vorticity formulation used in this paper.

The comparison between the k-1 results computed in this work follows. Far the best
results are obtained using BEM and CH model, following CFX (CFX 5.5, 2001) and LS
model and the last is BEM and FLB model (Figure 6). From Figure 5, where the
vorticity profiles at lower wall are shown, the corner bubble is clearly seen using
higher grid density B and C. As suspected, the influence of the turbulent model used is
much higher than the numerical method used. Velocity profile prior to reattachment
point of the mean vortex are shown in Figure 7 showing good agreement between both
BEM computations and the CFX result.

In Figure 8, the temperature contour lines are shown in the recirculation zone.
The reattachment points are more clearly indicated with the local Nusselt number
fall in the Nusselt plot at the lower wall (Figure 9). Comparing with the Nusselt
number profile at upper wall, the recirculation zone significantly decreases the heat
flux rate.

Recirculation Mean Secondary Third

CFX LS N ¼ 8,500 4.61 0.36 –
CFX LS N ¼ 34,000 5.27 0.97
BEM FLB N ¼ 8,500 3.07 0.16 –
BEM FLB N ¼ 34,000 4.52 0.30
BEM CH N ¼ 8,500 4.28 1.21 –
BEM CH N ¼ 34,000 5.72 1.14 0.014
BEM CH N ¼ 76,500 5.81 1.19 0.045
CH (Bredberg, 2001) 5.86 ? ?
RSM (Hanjalić and Jakirlić 1998) 6.38 1.55 0.042
DNS (Lee et al., 1997) 6.28 1.76 0.040
exp (Jović and Driver, 1994) 6.10 ? ?

Table I.
Turbulent flow over a
backward-facing step.

Comparison of
reattachment lengths
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Figure 7.
Turbulent flow over a
backward-facing step

RSM

BEM-CH

DNS

BEM-FLB

Note: Computed streamlines for DNS, RSM and BEM

Figure 6.
Turbulent flow over a
backward-facing step
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is enlargement of left hand side figure at bottom area

Figure 8.
Turbulent flow over a
backward-facing step

Note: Temperature contour plot at a recirculation zone
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5. Conclusions
A BEM has been developed to solve a thermal turbulent flow using the stream function
vorticity formulation and low-Re k-1 turbulence models. For the first time, a BEM
numerical algorithm has been used to solve a complex nonisothermal turbulent flow
with a recirculation region.

The turbulent flow over a backward-facing step example shows excellent
agreement of less than 1 per cent of the re-attachment point between BEM and FVM
code both using the same CH turbulence model (Table I). As expected, the comparison
with DNS and RSM computed reattachment lengths are under predicted using k-1
turbulence models.
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Alujevič, A., Kuhn, G. and Škerget, L. (1991), “Boundary elements for the solution of
Navier-Stokes equations”, Comp. Meth. in App. Mech. and Engin., Vol. 91, pp. 1187-201.

Brebbia, C.A., Telles, J.C.F. and Wrobel, L.C. (1984), Boundary Element Methods, Theory and
Applications, Springer, New York, NY.

Bredberg, J. (2001), “On two-equation eddy-viscosity models”, Internal Report 01/8, Chalmers
University, Göteborg.

CFX 5.5 (2001), AEA Technology Engineering Software.

Chien, K.Y. (1982), “Predictions of channel and boundary-layer flows with a
low-Reynolds-number turbulence model”, AIAA Journal, Vol. 20, pp. 33-8.

Cortella, C., Manzan, M. and Comini, G. (2001), “CFD simulation of refrigerated display cabinets”,
Int. J. of Refrigeration, Vol. 24, pp. 250-60.

Davis, G.D.V. (1983), “Natural convection of air in a square cavity: a bench mark numerical
solution”, Int. J. Num. Meth. Fluids, Vol. 3, pp. 249-64.

Elkaim, D., Reggio, M. and Camarero, R. (1992), “Simulating a two-dimensional turbulent flow
using the k-1 model and the vorticity-stream function formulation”, Int. J. Num. Meth.
Fluids, Vol. 14, pp. 961-80.

Fan, S., Lakshminarayana, B. and Barnett, M. (1993), “Low-Reynolds-Number k-1 model for
unsteady turbulent boundary layer flows”, AIAA Journal, Vol. 31 No. 10, pp. 1777-84.

Figure 9.
Turbulent flow over a
backward-facing step

45 9
8
7
6
5
4
3
2
1
0

lower wall
upper wall

lower wall
upper wall40

35
30
25
20

lo
ca

l N
u

lo
ca

l N
u

15
10
5
0
–10 –5 0 5

x

Notes: Local Nusselt number profile at walls. On the right hand side of Figure is zoomed recirculation
region, where the reattachment points are clearly indicated

10 15 20 0 2 4 6
x

8 10

Boundary
element method

531



Ghia, U., Ghia, K.N. and Shin, C.T. (1982), “High-re solutions for incompressible flow using the
Navier-Stokes equations and a multigrid method”, J. Com. Phys., Vol. 48, pp. 387-411.

Grigoriev, M.M. and Dargush, G.F. (1999), “A poly-region boundary element method for
incompressible viscous fluid flows”, Int. J. Num. Meth. Fluids, Vol. 46, pp. 1127-58.
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Škerget, L., Hriberšek, M. and Kuhn, G. (1999), “Computational fluid dynamics by
boundary-domain integral method”, Int. Jour. Numer. Meth. Fluids, Vol. 46, pp. 1291-311.
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